
ON THE THEORY or ELAsTICIm 

OP A NONHOMOCtENEOUS MEDIUM 

(ItTE4uI uPnu~~IxI(#11omaDoooIan~) 

PMM ~01.28, w 4, 1964, pp.601-611 

N.A. RCSTCVTSEV 
(Komeomol’sk-on-Amur) 

(Received April 7, 1964) 

The equations of equilibrium of an leotropic nonhomogeneous medium In which 
the elastic modull are nonconstant, dlfferentlable Sunctlone of posltlon and 
Pol8son’s ratio v has a constant value, have been studied by making tise 
of the methods of separation of variables and integral traneforma. The equa- 
tion for the stress functions In Isothermal coordinates has been given 
together with some appllcatlona. In the three-dimensional problem, condl- 
tlone have been Sound for the exlatence OS radial stress dletrlbutlons. In 
particular, the case where the elastic modulus depends on a power of one OS 
the Cartesian coordinates has been investigated. In this oaae, it haa been 
eetabllshed that the fundamental functions for the two-dimensional problem 
of a strip are certain confluent hypergeometrlo Sunotlons. The applloatlon 
of the RLu%er method has been studied for three-dimensional prgblema - mainly 
in the case of axial symmetry. A method ha6 been given for the numerics1 
solution of the Bouseineaq problem In terms of the Samlllar Flamant problem. 
In the particular case of a power law, when the Flamant problem has an exact 
solution, It turns out that the Bouaslnesq problem has an exact solution. 

1. In the plane problem for an Isotropic nonhomogeneous medium with a 
constant Poisson18 ratlon,when there are no body forces or thermal atreseee, 

the equation for Airy’s stress function F has the form [ 11 

(I- v)A(mAF)= ‘ga$ + 
1 

m=q, p = G, 

It can be deduced by substituting the expresalons for the etralns 

au 
em--&=m -aj C E + (1 - v,aF], 

e, = g+g= 

Pm av --- 
‘w aa+ 2 g!.!!& 

A=g+$, 

(1.1) 

-a$+(l -v)AF] 

(1.2) 

Into the oompatlblli~y condition. The notation (1.1) relates to a state 0S 
plane strain. In order to transfer to a state OS plane stress it is neces- 

sary to change v into y+- v/(1 + V) . This equaion is the &.ler equation 
5.n the variational problem for the Sunotlonal 
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As was first pointed out by Castlgllano and can be verified by direct 

calculation, the expression on the right-hand side of (1.1) Is the joint 

Invariant of two stress tensors defined by the functions F and m (F de- 
fines the true stresses and m the fictitious stresses). 

Therefore, In the Isothermal orthogonal coordinates 

E + 4 = 5, 5 = f (4, I I 2 = h, A = ha ($ + &) 
Equation (1.1) assumes the form 

(1 -v) A (mAF) =&&A,,$ +&,mD&-2D~,,mD~,,F (4.4) 

where D Is an operator defined by the equations 

(14 

For the stresses we have [2] 

% = DEEF, q =D,$? %l = -&J (4.6) 

In the polar coordinates 5 = In r and 51 - rp we have 

(1 - v) cat (ga + ga ) [e-lEm (& + &) F] = (s + 
+(gi- g) (ag + $) - 2 (a$ - gg (g$ 

If In Equations (1.1) and (1.7) we set 

m = m,ea+@U 

an equation with constant coefficients Is obtained 

plifles the formulation and solution of problems. 

W) 
(W 

that slgniflcantly slm- 

Certain problems with a modulus as In (1.8) have already been solved [?I]. 

In this case, separation of variables cannot be applied to Equation (1.4). 

2. Tne theory of elasticity of nonhomogeneous media Introduces the prob- 

lem of finding the distribution of the material constants which admits the 

given state of stress. Such problem was first posed and solved by Lekhnlts- 

kll [4] for a state of radial stress. In the cited paper the problem was 

solved without use of a stress function. The obtained solution Is not gene- 

ral in the sense of the theory of partial differential equations. We will 

give a solution that Is general in the above-mentioned 8enSe. We have 



Under these conditions, Equation (1.6) assumes the form 

A(+)=&+ y=((cD+@,")m 

This equation has a closed solution with arbitrary parameters 

Y = ro: (A cos ncp + B sin ncp) 

n=n(a)=~(1-a)[1+avl(i-v)l (2.3) 

Consequently, the more general solution with arbitrary functions can be 

represented by the StieltJes Integral 

Y = \ F Ices ‘pn (cz) df (a) + sin cpn (a) dg (a)1 (2.4) 

where f(a) and ~(a) are arbitrary functions. The solution given In [4] 

can then be obtained by making f(c) and g(a) step-functions. In the same 

paper It has been shown that a power-law dependence of the elastic modulus 

c~ = Ky' on the Cartesian coordinate I/ Is Included In this class of solu- 

tions. It can be obtained when Q. = - k In Equation (2.3). In the cited 

paper no formulas were given for the displacements. Here, we will deduce 

the corresponding results for a half-space when a concentrated normal force 

p Is applied to Its boundary (the Flamant problem) 

(I, == - CPr-' (sin Cp)k cos q (‘/g-c - cp) 

C = = (sin (p)k+l ES cosq(+-q)dq]-'= 

0 

= 
2'+'Y [I + 1 i(l + k + 9)l I‘ [I j-2 2 (1 + k-q)] 

nr (2 + k) 

(2.5) 

(2.6) 

(I-v)9CP. I . 
“, = -2Kk (1 + k) ,“1 “I1 f/ 

q = 1/(1 + k) [I - kv / (I - v)l 

Consequently, when y = 0 the vertical displacement IS 

S(V, X) = 
(1 -v)9CP . Jr9 
2K (, +i;j- sin T (2.8) 

The formulation of the problem of the action of a distributed loading 

p(x) is meaningful provided 0 < k < 1. Then 

2, (z) = v \ p (E) 1 I - E I.-W 
. (2.9) 

where the integral is extended over the whole loading section. When k = 0, 

the elastlc,modulus becomes constant, u = K , and the equation turns Into 

the equation of the contact problem for a homogeneous half-space [5]. 
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By calculating In the same way the dieplacements produced by a shearing 

load applied to the boundary, In place of the single equation (2.9), we 

obtain a system of equations for the distribution of the normal and shear 

loadings ~(5) and t(p) . This was done by Galin (61, where it was also 

proved that the solution of the problem for a point force is unique. This 

IS important, because in this case the boundary y = 0 is a line of singu- 

larlty. 

3. In the present case, the occurance of the singularity has been con- 
nected with the fact that such a nonhomogeneous medium cannot be physically 

attained. This same circumstance also implies other consequences, i.e. 

bounds for the possible values of the index k in the power law. This is 

an obstacle to Its application as an Xnterpolatlon formula for designing a 

foundation. In the work of the reactive pressure the fundamental contribu- 

tion arises in layers near the surface, but precisely in this region the 

interpolation formula agrees badly with reality. At the same time the power- 

law formula is one of the most simple along with the exponential one. There- 

fore, there is interest In the equilibrium of an elastic strip in which the 

dependence of nonhomogeneity on depth can be represented by a Power law with 

the line k ii: 0 lying outside or on the edge of the strip where it becomes 

infinitely rigid on passing into the half-space. We will show this does not 

imply a sl.@ficant complication of the problem in comparison with the prob- 

lem for the half-space consisting of homogeneous layers or with a nonhomo- 

geneity that can be described In terms of an exponential law. In fact, when 

m = CV-~', Equation (1.1) gives 

a (y-QJ7) z ‘e &+2 ‘g2 

Representing F(.Y,~) by the Fourier integral 

F (x, y) = 7 eiEV (y9 f) d% 

simple calculations yield 

This equation can be written in dimensionless form by setting 

Then we have 

We will represent the solution of this equation by the Laplace 

f (7)) I= Se"llp@)df 
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taken over a suitably chosen contour [7]. After lntegraUon by parts and 
reductions we obtain Equation 

(P - iy 2 + 2 (k + 4) (P - 1) 82 + (3.6) 

+ [(k + 3) (k + 4) + h - 2k - 41 cp = 0 

This equation has regular slngularltles at the points $ = - 1, 1, 0 . 
Caloulatlon of the characterlstlc exponents yields the scheme of the general 
solution 

i 

1 4 00 

cp (t) = P - l/z (3 + k-q) - ‘/a (3 + k - d 3 + k t 

- l/s (3 + k + d - l/a (3 + k + q) 4+k I 

The substitution 2u = 1 - t brings the elements ln the upper row Into 
the standard form (0, 1, 0) . As independent prirticular solutions we can 
take the following hypergeometrlc fUnCtlOnS 

'PI = [u (1 - U)l-“s(s+k)+“~q~Fr (q, q + 1; u) 

‘P.J = [u (1 - u)l-‘/1(s+~)+“14U-q,F,~ (0, 1; 1 - q; u) 
(3.7) 

which, of course, can be transformed into the elements 

‘p1 = ,-‘MS+Q+%cl (1 _ U)-‘/~(~+W%q, (pB = U-%~s+‘+%q (1 _ U)-‘/r(s+k)+‘/.cr (3.8) 

Introducing these expressions Into the Laplace transform (3.5), we find 
that’the Independent particular solutions of (3.4) are [7] the confluent 
hypergeometrla functions +(a; o; a) , Y(o; o; x) , where a-- i(l+k)+k, 

u- -(l+k), z - 2q with a supplementary factor IZen. The general solu- 
tion has the form 

f (rl) = cn <C,@ (- 1/S (1 + k) + %q; - (1 + k); 2q) + 

+ GY (- l/o (1 + k) + V1q; - (1 + k); 2q) + 

+ Cd’ (- ‘1s (1 + k) - Vrq; - (1 + k); 2q) + 

+ C,Y (- ‘is (1 + k) - ‘/sq; - (1 + k); 211)) (3.9) 

or., changing to Whittaker fun&Ions, 

In the theory of integral transforms with Whittaker functions, a certain 
amount of progress has been made reoently (see C8]). Therefore, we have the 
opportunity of applylng the methods of integral transforms both to the study 
of the state of stress ln plates and to the study of related models of elas- 
tic foundations, Here we will consider one example ln which the first fun- 
damental problem for a strip on a rigid fOundatlOn under the aotlon of normal 
loading on the upper boundary has a relatlvely’s$mple solution. 
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for 
4, We will assume that IR = cry inalde the strip 0 c y c H , and m = 0 

y < 0 l The case of an exponent * s-1 Is s%ngular since the method 
considered above then give8 only two independent particular solutions of 
equatian (3.3). However, in the present case this equation can be solved 
directly. 3y reduction of order, together with the required regularity of 
y(v,s) at y = 0 , we have 

For the sZraina md stresses from Formulas (X,2) and (3.2), it follows 
that 

Hence we conclude that when p - 0 we have only a rigid disp‘lacement 
that we assume to be zero and that on the boundaries y = 0, y = W there 
will be no shear stress when f,‘(0, c) r= f,‘(H, E) = 0, Hence it Follows that 

I O” 
f(H, 5) =m s e-jk*p (t) dt 

--co 

(4.4) 

The solution of Rquation (4.1) satisfying these conditions has the form 

f (u, 4) = ggp i e_iElp(t)dt 
-co 

where 

K typ 4; a) = cc&$ (fj - ++y, 1 ol<Y 

a>y 
(4.7) 

The exponential integrals occur 
i”ei 

in this solution are tabulated func- 
tiona and there is no obstacle here n obtaining numerical results. 

3, Before passing to the consideration of three-dimensional problems, 

we will establish a result of a negative character1 namely that in a three- 

dlmenslonal nonhomogeneous medium it is In general impossible to have a 

radial distribution of stresses. More precisely this means that the Lekh- 

nlteMi problem does not have a solution in arbitrary functions like (2.4). 

There is only one particular sdutZon containing one arbitrary function. 

When the elastic modulus depends on only one coordinate, this solution is 

Identical with that obttd.Wi In [9J . 

Here it ia convenient to pass to spherical coordinates. The equilibrium 
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equations reduce to the single equation 

%+ $6,=0 (5.1) 

Hence, by virtue of the axial syuxnetry of the problem, it follows that 

(TJ. = (I = r-V (e) (5,2) 

For the strains we have 

67 = 8, eee = *eqg = - ve, e,e = eelp = e,, = 0 (e=a/E) (5.3) 

We will not write out the compatibility conditions in spherical coordl- 

nates [lo] but will quote the result of substituting expressions (5.3) i&o 

them 
I 3s 

\ ’ a% + EOle$+2r3+2(1+v)c= 0, $+ 
a%3 

vr - = O (5.4) ar a0 

vPa$((‘e)+rg- cm eg =o, Vr~.g(re)+rg-~ =o 

From the last two conditions It follows that 

ab -- 
a03 =‘B~= , ae 0 8 = f (r) - 8 + g (7) (5.5) 

Substitution of this result Into the second condition (5.4) yields 

f (r) + vrf' (r) = 0, f (r) = A+” (am) 

Substitution lnto the first condition leads to the equations 

Thus 
(v + 1) g(r) + vrg’ (r) = 0, g (r) = BI-~-~~ (5.7) 

e = AI-~” cos 0 + Br-1-u” (5.8) 

This function satisfies the last equations (5.4) Identically. 

Hence, for the elastic modulus we have 

E = + = r'/Y-'S(e) 
ArcosO+B 

If E Is a function of I only, the_? 

s (e) = c (case)'/"-1, 

(5.9) 

(5.10) 

When A = 0 we have one, and when B = 0 we have another Of the SolU- 

tlons deduced In [lo]. For the displacements we have 

ur=A: 
v-l 

rl-l/v cos 0 - VBr-P, ug = Z? A +-1/v sine 
v-i (5.11) 

(the rigid displacements has been omitted). On the surface z = 0 , fJ = an 

they are 
4 = - yBr-W, ug = ;I Arl-lIv (5.12) 

In order that this solution 1s meaningful In the case of a distributed 
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load, It is necessary that the Indices in these formulas are greater than 

-2. If B#Q, this requires v > 4 , which Is physically unreallstlc. 
When B = 0, It Is necessary that v z 5 . Thus, actually 

E = #-aF (O), 5’ (0) = cF (6) (cos O)u”-1 v/2 > v > Vs) (5.13) 

When p(e ) = conat , we obtain the solution found in C lo]. 

6. The equilibrium equation for the displacements In a nonhomogeneous 

medium can be obtained ln the usual way from the Cauchy equations by substl- 

tutlng Into them the expressions for the stresses In terms of the strains. 

Introduolng the notation 

0 = div u, 6 = def u 
the stress tensor Is given by Formula 

s=heI+2p~ (I Is the unit tensor) (6.1) 

and the equilibrium equation for the displacements has the form 

where 

When v = const , 

a+ + AU + 

A = grad div - rot rot 

this equation simplifies to 

[(a - 4) e1+2&vin p = 0 

(6.2) 

( 
1 

--_ 1 (6.3) 

We consider a half-space with the elastic modulus depending on the depth, 

P = P(I) l In Cartesian cbordlnates, we have 

a g + AU + !2 (4 ezx = 0, ag+Av+ q(z)e,, = 0 
(6.9 

& g + AW + Q (2) [(U - 1) e + %&I = 0, Q (4 = f ln P (4 

If p depends on the depth exponentially, then p(x) = const , and Aqua- 

tlon (6.4) reduces to a system with constant coefficients. This case will 

not be considered. Other related problems have already been considered [ll). 

Bslow we will treat the basic case when l/q(r) has the form ax + b , or, 
by translating the coordinate origin, more simply r/k, I.e. when there Is 

a power-law dependence of the elastic modulus on the depth, p - iLZ’ i here 

v=a+& lsaspecialaase. We will seek the solution of equation (6.4) 

in the form of the Fourier Integral transform 
03 

(4 v, 4 = SJ 
(II, I’, W) ei (b+nv) dEdq (6.5) 

In the general case, this leads to the sixth-order system 

- PSU) + q (4 (g + iEw) = 0 (6.6) 



uq(i’z - w - ?v) + (g - P’V) + q (2) (g + i,q = 0 (6.6) 
cont. 

u[~~+i(g~+rl~)]+(~~-PaW)+ 
+ q (2) [(u + 1) d; + (a - 1) i (EU + W)] = 0 (Pa= 4’ -i VI 

The study of this system in the general case of an analytic coefficient 

&j la difficult. In the case of power law, a Laplace transformation makes 

It poaalble to reduce the order of the system by two and to eliminate the 

regular singularity at Infinity. Assuming in this case 

(U, V, W) = S (0, X, Y) eLkIt (6.7) 

after some calculation we arrive at a system containing the first time derl- 

vativee of the functions @, X, Y. In order to avoid an awkward notation, 

we will present this system in matrix form 

Q, 
d x = [I [ 

t2 

zy - aEq ta - p2 - a2qe 

(k - 2) t 

X 0 
(ka- k - a) it (ka - k -a) iq 

The determinant of the first matrix Is 

A(t) = (a + 1) (t” - p2)’ 

(6.8) 

For this eyatem the point at Infinity la a regular point. Nevertheless, 

the analytical investigation and the construction of solutions la a complex 

and difficult problem. 

7. The situation la somewhat simplified In the axlaymmetrlc problem, In 

thla case, the system of equations for the displacements reduces to two lnde- 

pendent aubsyetems, one of which describes a state of spherical symmetry 

and the other a state of torsion 

A++q(z);=O, 2,=24 ‘p (7.2) 

The last equation can be reduced to a form 

A@+&=0 (v=““) 
a2 
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In the case q (z) = kz-1, 0 < k < 1, this equation wab stzdled in[12], 
where the fundamental functions (hypergeometrlc were determined In a system 

of oblate spherlcal coordinates. Here we will give the reduction of (7.1) 
to a system of first-order, ordinary differential equations (when p(z)= &). 
For this we will represent the displacements u, TJ by the Hankel transforms 

U = 5 SJ, (TS) f (2, s) ds, (7.3) 
0 

w = f&& (rs)g(z, s) ds 
0 

For the functions y and q we then obtain the system 

$$ -(a + 1) &Y - CIS 2 + q (2) (2 - sg) = 0 

(a + 1) d$ - s2g + as2 + q (z) [(a - 1) sf + (a + 1)$-j = 0 (7*4) 

By setting n(t) = h2-' and making the substitution C = as , we obtain 

6ra~+(a+l)~-g]+k[(a--1)f+(u+~)~]=O 

C[$L (a+l)g-- u$]+k($ -g)=o 
(7.5) 

We now reduce the order of the system by means of the Laplace transforms 

f (5) = 5 cp (Q e% g (5) = 19 (1) erfdt (7.6) 

This yields 

dcp [I c alI (0, Z * = aal (t), aI3 it) (223 (0 I III xG (7.7) 

Aij (t) 
aij = -qjj- 9 A (1) = (a + 1) (P - 1)2 (7.8) 

A,, = t [(a + 1) (k - 2) it2 - a (ka - k - a) - (k - 2)l 
A,, = (a + 1) (ka - k - a) t2 - (a - k) 

A,, = (a - k) te - (a + 1) (ku - k - a) (7.9) 
A,, = t [(a + 1) (k - 2) t2 - (a + l)a (k - 2) - CL (a - k)l 

As can be seen, all the singular points of this system are regular. By 

ellmlnat1ng one function, we obtain for the other a second-order equation. 

A quadratic transformation then reduces the latter to the Heun equation with 

four singular points (of these, one IS an apparent singularity). 

We point out that In solving the plane-strain problem by the method of 
Fourier transforms 
the y-coordinate), 

(In the z-coordinate) and by the Laplace transform (In 
one Is lead to the same system of -equations (7.7). At 

the same time, In the plane problem the analytical aspect Is considerably 
slmpllfled by using a stress function. The derivation of this function In 
the problem of a strip reduces to a Fourier transform of a linear comblna- 
tlon of Whlttaker functions, whereas the displacements haveamore compllca- 
ted analytical structure as can be seen from FormUlaS (1.2). Thus, In the 
axisymmetrlc problem one Is compelled to seek another method that IS more 
eff'ectlve fromtheanalytlcal point of view. Her+lso a stress function 
night be Introduced, but It Is more rational to make use of the relations 
between plane and axlsymmetric problems as established by Mossakovskll [lj] 
and Aleksandrov [lb] for a homogeneous medium. Since these relations are 



represented by Integral transforms that do not affect the z-coordinate, they 
remain valid also in the case of nonhomogeneity with respect to this coordi- 
nate (*). In the last section we will give an application of this method to 
the problem of calculating the normal displacements on the boundary of a 
half-space produced by a concentrated normal force applied to the boundary 
(the Boussinesq problem). 

8. Since the shear stresses on the boundary vanish, the present problem 

can oe handled with the two formulas [ 143 

w (4 = ‘s *- (4 
-r 

v-& 7 

Let P(r) be a piece-wise integrable, bounded function. (The dash super- 

scripts denote values for the plane problem). 

Then P-(t) =0($-l) as t --. Bearing this in mind, for the Plane 

problem the displacements are given by 

w- (5) = 1 p- (t) R- (5, t) dt = - s P- (t) ag dt 
-03 

(8.2) 

p-(f)=Cp-(r)dz=+f plrJrdr 
o 1/ta---ra 

(8.1) 
6 

Let 

E- (5, 1) = K- (I z - tp, Km (5) = f IX,- (s) eisxds (8.3) 
4 

In view of the remarks regarding p-(t), we can reverse the order of 

integration In (8.2) after (8.3) has been substituted into It. ThUS 

00 

w- (z) = 
s 

isK,- (s) efdXds 3 e-istP_ (t) dt (8.4) 
--oo --a 

and from the first formula of (8.1) follows 

w (F) = 3 insR,- (S) J, (FS) ds T e+tP- (t) dt (8.5) 
--oo -al 

The result of substituting the second formula (8.1) Into the Inner inte- 

gral (8.5) can be obtained after overcoming some complications. However, It 
will not be necessary to do this. For the concentrated force P It is easy 

to find that P- (t) = (2nZ)-’ pi-1 

and the inner integral is equal t0 - t1~8g718 . In this case we find 

For a unit force P = 1 the d&placement W(F) = K(r) Is the kernel of 
the functional for the displacements on the boundary of a half-space (layer) 

W (F) = P 5 SK,- (s) J, (rs) ds (8.6) 

* 6% ?I) = 5s P 6 rl) K (F) Wq, F = 1/(2 - t)” + (y - q)” (8.7) 
Inverting (8.3) and Inserting the result into (8.6), we obtain a direct 

*) The author thanks V.I. Mossakovskli for suggesting this Idea. 



756 

representation of the kernel 

symmetric plane problem 

h’ (r) 

N.A. Rostovtsev 

x (I’) in terms of the kernel Ii- (X) of the 

+-+) dx 
-r/XT 

(8.8) 

P 

When applied to the power-law kernel (2.8), this gives 

Hence, when k = 0 or v = 
[5, 10 and 123. 

1/(2+k) one can derive already known results 

Note 1. The direct calculation of K -(a) from (8.3) sometimes 
leads to the calculation of the inte rals (8.61 between the terminals of the 
admissible values of the parameters ‘f as In the example treated). Since the 
derivation of (8.8) consists in the calculation of the convolution of a 
generalized Fourier transform and a Hankel transform, these Integrals should 
be understood In a generalized sense. 

Note 2. In the case where the elastic modulus depends on the power 
of one Cartesian coordinate, the Fourier transforms of the stresses aenerate 
the linear manifold 3f confluent hypergeometric functions of this co&dlnate. 
The transform connecting the plane problem with with the axieynunetrlc prob- 
lem does not alter the analytic character of this manifold. jcn the axisym- 
metric problem the Hankel transforms generate the same linear manifold. This 
de,ermines the degree and character of the analytical difficulties In both 
the above problems with such nonhomogeneities In the elastic properties. 
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